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Abstract

The hydrodynamics of the implosion and rebound of a small (10 lm diameter) air bubble in water was studied using a
three-dimensional direct numerical simulation (DNS). To study this problem, we developed a novel stabilized finite
element method (FEM) employing a combination of ghost fluid and level set approaches. This formulation treats both
the air and water as compressible fluids. Using this method, a transient three-dimensional (3-D) solution was obtained
for the implosion (i.e., collapse) and rebound of an air bubble. These simulation results obtained were qualitatively similar
to those observed/predicted in previous experimental/numerical studies. The 3-D simulations show that the conditions
within the bubble are nearly uniform until the converging pressure wave is strong enough to create very large temperatures
and pressures near the center of the bubble. These dynamics occur on very small spatial (0.1–0.7 lm), and time (ns) scales.
The motion of the air/water interface during the initial stages of the implosion was found to be consistent with predictions
using a Rayleigh–Plesset model. However, the simulations showed that during the final stage of energetic implosions, the
bubble can become asymmetric, which is contrary to the spherical symmetry assumed in many previous numerical studies
of bubble dynamics. The direct numerical simulations predicted two different instabilities, namely Rayleigh–Taylor type
interfacial/surface and shape instabilities. During the violent collapse stage, the bubble deviates from spherical symmetry
and deforms into an ellipsoidal-shaped bubble. A linear stability analysis based on spherical harmonics also indicates that
an ellipsoidal bubble shape could be expected. Moreover, interfacial instabilities also appear during the later stage of the
implosion process. Distinguishing these phenomena with the help of numerical simulations opens new opportunities to
understand many features of recent experiments on sonoluminescence and sonofusion.
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1. Introduction

The violent implosion of vapor/gas bubbles may lead to a number of phenomena of interest in science and
engineering including; cavitation damage, sonoluminescence, sonochemistry, sonofusion, etc. Owing to their
great practical importance, scientists and engineers have made a substantial effort to understand the hydrody-
namics involved through both experimental and theoretical investigations. Pioneering work on cavitation and
bubble dynamics was done by Rayleigh [44], who considered both empty and the gas filled cavities collapsing
in an incompressible liquid, but neglected surface tension and viscous effects. The Rayleigh–Plesset equation
[44,28,42,35] extended Rayleigh�s analysis to include surface tension and viscosity. Subsequently, many
researchers have refined these analyses by considering the effect of thermal conduction in the gas [39,38],
and accounting for the compressibility of the surrounding liquid [17,43,30,37]. However, none of these studies
treated the gas phase in detail since they assumed hydrodynamic equilibrium in the gas phase.

Indeed, many of these models also assumed that the gas was homobaric and was heated isentropically. Dur-
ing bubble implosions experimental findings indicate gas temperatures on the order of at least several thou-
sand degrees Kelvin, which implies a very high compression of the gas phase. To better understand the gas
compression process, researchers [63,33,37] have considered more complete solutions to the equations of
motion. The numerical studies of Wu and Roberts [63] showed that a shock can occur inside the gas bubble.
However this study was performed assuming spherical symmetry (i.e., considering only spatial variations in
the radial direction). The most detailed numerical studies published to date were those of Moss et al. [33]
and Yu et al. [66]. Unlike Wu and Roberts [63], these authors did not obtain the dynamics of the bubble from
the Rayleigh–Plesset equation. Rather they performed a complete analysis of the non-linear hydrodynamics of
the liquid surrounding the bubble using finite difference discretization of the conservation laws. However, the
analysis by Moss et al. [33] was unsteady but one-dimensional. Furthermore, they did not consider viscous and
surface tension effects. On the other hand, Yu et al. [66] solved the Navier–Stokes equations in 3-D using a
finite difference/front tracking technique, but they assumed that the surrounding fluid was incompressible,
and the pressure inside the bubble was uniform and neglected thermal effects.

The previous studies recognized the fact that an analysis based on spherical symmetry cannot be rigorously
correct [42], and hence researchers have attempted to study the spherical shape oscillations theoretically. Hil-
genfeldt et al. [18] elucidated for the first time the phase diagram for stable single bubble sonoluminescence
(SL) considering both shape and diffusion instabilities. Yuan et al. [67] numerically studied the shape stability
of a radially oscillating gas bubble by using the theoretical model of Hilgenfeldt et al. [18] with corrections
taking into account the gas density effect. Nevertheless, the authors suggest that further study, free from
the spherical symmetry assumption, would be necessary to understand the complete dynamics of bubble shape
instabilities. Previous researchers [5,18] also noted the significance of identifying these instabilities, and they
suggested that the Rayleigh–Taylor (RT) shape instabilities were likely responsible for the extinction of SL
when the acoustic field driving the bubble oscillation exceeds a certain threshold; in particular, about
1.7 bar for an air/water system [1].

However, very few attempts [66] have been made to solve the full three-dimensional (3-D) non-linear prob-
lem to study the temporal evolution of these instabilities. The analysis of the collapse and rebound of an
imploding bubble is complex due to the highly transient and non-linear nature of the problem. In this paper,
we have presented a detailed 3-D analysis considering effects of viscosity and surface tension and the complete
set of the conservation laws (i.e., the conservation of mass, momentum, and energy) for both the compressible
liquid and gas phases. The dynamics of the bubble is implicitly obtained as a part of the solution rather than
from a Rayleigh–Plesset analysis. The following discussion provides the motivation for the direct numerical
simulation (DNS) of bubble dynamics.

In an effort to learn more about the dynamics of the bubble and shock wave interaction, researchers tra-
ditionally carry out experiments. However, the phenomena of interest here occurs on very small spatial and
time scales, which makes instrumentation and accurate measurements difficult. Hence, despite the advances
in technology, experimentalists continue to have difficulties in studying the dynamics of bubble implosion pro-
cesses. While the overall characteristics of the bubble dynamics is of interest, the implosion process, which is
strongly influenced by the evolution of the smallest scales, is the key to understanding phenomena such as
cavitation damage, sonoluminescence and sonofusion. The search for new alternatives to understand the
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hydrodynamics involved has resulted in the development of various numerical techniques. However, the devel-
opment of efficient algorithms to understand rapid bubble dynamics is still a challenge.

Owing to the advances in numerical methods and computational hardware, numerical experiments have
become increasingly popular and feasible for the study of complex non-linear systems. Direct numerical sim-
ulations (DNS) offer an excellent opportunity to understand bubble dynamics and allows new insights into key
mechanisms during bubble implosions. Nevertheless, the development of a method to study complex problems
such as an air bubble implosion, presents a number of challenges. The foremost challenge is to efficiently rep-
resent the coupled compressible fluid dynamics of both phases (liquid and gas). Secondly, the method must
allow one to accurately track the interface between the phases. Finally, it must be capable of resolving any
shock waves which may be created in one or both phases during the final stage of bubble implosion.

In all multiphase numerical methods, the essential ingredients are an efficient technique to evaluate the pha-
sic flow fields, and an accurate and robust strategy to resolve the interface. A detailed discussion of the various
available multiphase methods has been presented by Nagrath et al. [34]. Although over the last several dec-
ades, finite element methods have grown in popularity for fluid dynamics applications, not until recently
has this method been used to study multiphase flow problems [34,57,56,2,53,54]. Tezduyar et al. [53] developed
a front tracking method to resolve interfaces using deforming space-time finite element formulations. Barth
and Sethian [2] developed a finite element Petrov–Galerkin scheme for the level set equations on triangulated
domains. Tornberg and Engquist [57] presented a numerical method for simulating incompressible two-dimen-
sional multiphase flow. Nagrath et al. [34] presents a finite element level set method for solving incompressible
multiphase flows in three dimensions. This paper extends the aforementioned works to present for the first
time a three-dimensional stabilized finite element level set approach for solving two-phase compressible flows.
In the present work, a stabilized finite element method (FEM) namely, a streamline upwind Petrov–Galerkin
(SUPG) method, was employed for computing both the flow fields and the interface motion. The finite element
method (FEM) has the advantage of using an unstructured mesh to match the grid size to the required local
physical length scales [32]. Additionally, the method has been proven to be stable and to attain optimal con-
vergence rates with respect to the interpolation errors [13,20]. As discussed by Hughes et al. [21], the SUPG
method is an excellent method for problems with smooth solutions, but typically introduces localized oscilla-
tions about sharp internal features and boundary layers. To prevent oscillations, a discontinuity-capturing
term, proposed by Hughes et al. [22], was added to the formulation. This term provides additional control
over gradients in the discrete solution and considerably increases the robustness of the methodology. In the
current work, we have used the level set method for computing interface motion. The strength of this method
lies in its ability to efficiently represent an arbitrarily complex interface accurately, thereby allowing the
computation of flows with surface tension and rapidly changing topology.

The continuum surface force (CSF) model proposed by Brackbill et al. [4] was implemented to incorporate
surface-tension-induced stresses. Also, an efficient re-distancing strategy [40] was adopted to ensure the vol-
ume of each phase was conserved during re-distancing. Although the proposed algorithm is known to predict
compressible gas dynamics quite well for compressible multiphase flows, it can lead to the spurious non-
physical oscillations across the interface due to smeared density profiles. This can be attributed to the radical
change in the equations of state across the interface. Hence, an approach similar to the ghost fluid method
developed by Fedkiw et al. [11] in the finite difference context, has been developed and implemented into
our finite element model. This model allowed us to treat compressible multiphase flows with large density dif-
ferences. It should be stressed that the strategy and FEM formulations presented in this paper, employing
both ghost fluid and level set methods, are novel in the field of computational fluid dynamics and are well sui-
ted for the analysis of compressible 3-D multiphase flows.

With numerical simulations, we show that due to the inertial effect of the liquid compressing the gas, an
energetic bubble implosion may take place. During bubble collapse, the simulations predict spherically con-
verging shock wave development, which intensifies as it moves towards the center of the bubble. This shock
causes the local temperatures and pressures of the air in the interior of the bubble to rise rapidly. The air
bubble reaches a minimum radius at the end of the implosion and then rebounds due to high internal
gas pressure. The reflection of the shock from the center of the bubble produces a spherically divergent
shock wave. Additionally, it was observed that, during the final stages of collapse, the bubble experiences
two different instabilities: (i) interfacial instabilities, which occur whenever the gas is strongly accelerated into
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a liquid; (ii) shape instabilities due to the excitation of non-spherical modes causing the bubble to take on a
non-spherical shape. These instabilities are in good agreement with earlier numerical and theoretical predic-
tions. As noted by Wu and Roberts [64], the classical RT surface instabilities that arise on the surface of an
acoustically-driven bubble are complicated by the spherical geometry, by the temporally varying accelera-
tions, and by the possibility of resonances between the oscillations in bubble shape and the driving
frequency. The Rayleigh–Taylor (RT) interfacial instabilities, which arise due to the significant difference
in the momentum across the interface, quickly vanish once the phasic density difference vanishes and when
the rebounding bubble expands.

The outline of the paper is as follow: Section 2 presents a theoretical prediction of the motion of the bub-
ble and the pressure and velocity fields inside the gas and liquid phase during the initial stages of a bubble
implosion. Section 3 presents the formulations and the numerical method, which includes the governing con-
servation equations (Section 3.1), the level set method (Section 3.2) and surface tension modeling (Section
3.3). The finite element discretization of the compressible Navier–Stokes equations is presented in Section
4. The discontinuity capturing operator, implemented to efficiently perform the flow computations with
sharp discontinuities or shocks, is discussed in Section 4.1. Also in this section, we present the modeling
details of the level set method and the finite element solution technique for solving both the level set and
the re-distancing equations (Section 4.2). The novel approach used to implement the ghost fluid method
is discussed in Section 4.3. Section 5 presents the results and discussion and Section 6 presents the salient
conclusions.
2. Bubble motion and flow field during the initial stages of implosion

The collapse of a spherical gas filled cavity in an incompressible fluid can be determined using the Rayleigh
equation [44]. Knowing the evolution of bubble radius, one can calculate the evolution of the pressure and
flow field. This process is well described by Nigmatulin et al. [37]. The following analysis describes how to
obtain the flow field based during the low Mach number phase of bubble implosion. DNS does not necessarily
require this solution, however, this analysis can be used to generate the appropriate initial conditions for the
early stages of bubble implosion and this will save computational resources. The details of its use are given in
Section 5.3.

Consider the spherically symmetric radial flow of an incompressible liquid inside an infinitely large spher-
ical domain. A gas bubble is located at the center of the domain. The momentum balance of the surrounding
liquid in radial direction is given by
ql

ou
ot
þ u

ou
or

� �
¼ � op

or
; ð1Þ
where r is the radial distance from center of the bubble, and u is the velocity in the radial direction. If R(t) is
the instantaneous bubble radius, then the conservation of mass for an incompressible liquid dictates that
u ¼ R2 _R
r2

. ð2Þ
Since the radial velocity can be expressed in terms of a velocity potential as, u ¼ oU
or , we can write,
U ¼ �R2 _R
r

. ð3Þ
Substituting (3) in (1) yields
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Integrating the above equation with respect to ‘‘r’’ yields the transient Bernoulli equation,
ql
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As r!1, U = 0, p = p1, so, F(t) = p1. Therefore,
p ¼ p1 � ql

oU
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þ u2

2

� �
. ð6Þ
Substituting for U and u in terms of ‘‘R’’, using (2) and (3), we have,
pðr; tÞ ¼ p1 � ql �
R2€R
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. ð7Þ
Applying (7) at point r = R(t), we obtain the well-known Rayleigh equation,
R€Rþ 3

2
_R

2 ¼ ðpa � p1Þ
ql

; ð8Þ
where pa is the liquid pressure at the liquid/bubble interface (uniform pressure within the bubble is assumed
for the initial conditions, and this is a valid assumption for the initial phase of bubble collapse) given by
pa ¼ p0 þ
2r
R0

� �
R0

R

� �3c

� 2r
R

. ð9Þ
Here R0 is the initial bubble radius at t = 0, p0 is the liquid equilibrium pressure when the gas bubble is at its
initial radius, and c is the polytropic exponent of the gas. For isothermal conditions c = 1, where for adiabatic
conditions c is the ratio of the specific heats ðCp

Cv
Þ. Combining (8) and (7) yields an equation governing the pres-

sure distribution in the liquid,
pðr; tÞ ¼ p1 1� R
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. ð10Þ
The FEM based hydrodynamic shock code, which is primarily focus of this paper can be initialized using (7)
and (2).
3. Numerical formulation

3.1. Governing equations

Consider the compressible equations of motion (complete with the continuity and total energy equations)
written in conservative form [24,25]
U ;t þ Fadv
i;i � Fdiff

i;i ¼S; ð11Þ
where
U ¼ U 1 U 2 U 3 U 4 U 5f gT ¼ q 1 u1 u2 u3 etotf gT
; ð12Þ

Fadv
i ¼ uiU þ p 0 d1i d2i d3i uif gT

; ð13Þ
Fdiff

i ¼ 0 s1i s2i s3i sij uj � q00if gT ð14Þ
and
sij ¼ 2l SijðuÞ �
1

3
SkkðuÞdij

� �
; SijðuÞ ¼

ui;j þ uj;i

2
; ð15Þ

q00i ¼ �jT ;i; etot ¼ eþ uiui

2
; e ¼ cvT . ð16Þ
The state variables are: the velocity ui, the pressure p, the density q, the temperature T and the total convected
specific energy etot. Constitutive laws relate the stress, sij, to the deviatoric portion of the strain,
Sd

ij ¼ Sij � 1
3
Skkdij, through a molecular viscosity, l. Similarly, the heat flux, q00i , is proportional to the gradi-

ent of temperature with the proportionality constant being the molecular thermal conductivity, j. The
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formulations presented in this work can accommodate a general divariant fluid. A variety of equations of state
can be considered, however in this study, the gas phase was assumed to be an ideal gas and the liquid phase
was described by a linearly compressible equation of state. Note that we have two fluids (with two viscosities,
two thermal conductivities and two constitutive laws), however, as will be discussed later, a level set field, /,
allows us to consider these fields as one global field for each varying quantity. Finally, S is a body force (or
source) term, such as gravity, and the force due to the surface tension. The representation of the interfacial
surface tension force as a ‘‘body force’’ applied on the interface is dealt with in Section 3.3.

For the specification of the methods that follow, it is helpful to define a quasi-linear operator (with respect
to some, yet to be determined, state variable vector, Y, defined in (37)) related to (11) as
L � A0

o

ot
þ Ai

o

oxi
� o

oxi
K ij

o

oxj

� �
; ð17Þ
which can be decomposed into time, advective, and diffusive portions,
L ¼Lt þLadv þLdiff . ð18Þ

Here Ai ¼ Fadv

i;Y is the ith Euler–Jacobian matrix, Kij is the diffusivity matrix, defined such that K ijY ;j ¼ Fdiff
i ,

and A0 = U,Y is the change of variables metric, which can be found in Appendix A. For a complete description
of matrices A0, Ai and Kij, the reader is referred to Hauke [14]; Hauke and Hughes [16]. Using these results,
one can write (11) as simply, LY ¼S.

3.2. The level set method

The level set approach represents the interface as a zero level set of a smooth function, and simultaneously
maintains a level set function, which, by definition, is the signed distance from the interface. Hence, instead of
explicitly tracking the interface, we implicitly ‘‘capture’’ the interface within a field which is interpolated with
the finite element basis functions like any other state variable (e.g. pressure, velocity, temperature, etc.). This
enables us to represent the interface between the two phases accurately and to compute flows with large den-
sity ratios and surface tension. As noted by Sussman et al. [51], conventional conservative methods suffer from
excessive numerical diffusion which smears the sharpness of the front. The level set function is typically a
smooth (Lipschitz continuous) function, denoted here as /, which eliminates the difficulties that conventional
conservative schemes incur.

Probably, the most important advantage of level set methods is that the interfaces can easily merge or
break-up. Furthermore, the level set formulation generalizes easily to three dimensions. The actual location
of the interface is never computed, since the interface is embedded as a particular level set in a fixed domain.

In our formulations, a smooth level set function, /, was used to track the interface between the gas phase
and the liquid phase. The interface, C 0, is the zero level set of /
C0 ¼ fxj/ðx; tÞ ¼ 0g. ð19Þ

The level set function is considered here to be positive in the liquid phase and negative in the gas phase. Hence
we have:
/ðx; tÞ ¼
> 0 if x 2 the liquid;

0 if x 2 C0;

< 0 if x 2 the gas.

8><
>: ð20Þ
Therefore, we initialize / to be the signed normal distance from the interface. Since the interface moves with
the fluid, the evolution of / is governed by a transport equation
D/
Dt
¼ o/

ot
þ u � r/ ¼ 0. ð21Þ
As discussed in Section 4.2, this additional advection equation for the level set scalar is solved in a manner
similar to the equations of motion. The physical properties of the fluid in each phase are calculated as a func-
tion of / as:
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qð/Þ ¼ q1Hð/Þ þ q2ð1� Hð/ÞÞ; ð22Þ
lð/Þ ¼ l1Hð/Þ þ l2ð1� Hð/ÞÞ; ð23Þ
where H(/) is the Heaviside function given by:
Hð/Þ ¼
0 if / < 0;
1
2

if / ¼ 0;

1 if / > 0.

8><
>: ð24Þ
3.2.1. Interface thickness

Use of the Heaviside function described above leads to poor numerical results due to the assumed zero
thickness of the interface. Instead, we can use an alternative description of the interface as proposed by Suss-
man et al. [51]; Unverdi and Tryggvason [58]; and Sussman et al. [48]. It should be noted that there exist
another approach proposed by Kang et al. [27] which treats the interface in a sharp fashion using jump con-
ditions at the interface. However, in the present work, we took the former approach and used a smoothed
Heaviside function, H�(/), instead of the exact Heaviside function, H(/). The smooth Heaviside function
was defined as [48]:
H �ð/Þ ¼
0 if / < ��;
1
2

1þ /
�
þ 1

p sinðp/
�
Þ

� �
if j/j 6 �;

1 if / > �;

8><
>: ð25Þ
where / represents the signed normal distance to the interface. The 1
2

contour of the sharp Heaviside function
H(/) creates jagged or staircase contours on any discrete mesh of spacing Dx. However, by giving the interface
a thickness of � = kDx, where k > 1, sharp changes across the interface are smoothed.

3.2.2. Re-initialization or re-distancing of level sets

In the formulation describe above, the interface will be accurate so long as / is maintained as a distance
function. However, under the convection implied by Eq. (21), the level sets that are adjacent to the zero level
set may move with velocities different than that of the zero level set. If so, the / distance field will get distorted.
Thus, one must re-distance the level set function on regular intervals in order to rebuild/maintain the signed
distance function. There are several ways to accomplish this re-distancing [10,49–51]. We have followed the
technique introduced by Sussman et al. [51]. Its virtue is that the level set function can be re-initialized without
explicitly finding the zero level set. The idea is to solve the partial differential equation,
od
osd
¼ Sð/Þð1� jrdjÞ; ð26Þ
where
Sð/Þ ¼
�1 if / < 0;

0 if / ¼ 0;

1 if / > 0

8><
>: ð27Þ
and d(x,sd = 0) = /(x,t) and sd is a pseudo time. Given any initial data for /, solving this equation to steady-
state provides the distance field / with the required property |$/| = 1, since convergence occurs when the right
hand side of (26) is zero. Note that the sign function S(/) controls the flow of information. If / is negative,
information flows from the interface into the gas (i.e., more negative /), and if / is positive, information flows
the opposite way. The net effect is to re-distance the level sets on either side of the zero level set. Furthermore,
instead of the sharp sign function we use the smooth sign function defined as
Sð/Þ ¼ 2ðH �ð/Þ � 1=2Þ; ð28Þ

where H�(/) is given by (25). The steady solutions of (26), d, are distance functions. Since, on the interface
S(0) = 0, d(x,sd) has the same zero level set as /(x,t). Note, that this equation is relaxed in pseudo-time, sd,
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which is not related to the physical time, t. Hence we only need to solve (26) for sd = 0 . . . �v, because the level
set function re-initialization is required only near the interface. The definition of v is obvious if we re-write (26)
in hyperbolic form as [51]
od
osd
þ v � rd ¼ Sð/Þ; ð29Þ
where the pseudo-convection speed is given by
v ¼ Sð/Þ rd
jrdj . ð30Þ
Eq. (29) is a non-linear hyperbolic equation with characteristics pointing outwards from the interface in the
direction of the normal. The numerical strategy, which was adopted in the present study, was to perform
the re-distancing operation at the end of each time step.

3.3. Modeling of surface tension

For many fluid flow problems interfacial motion induced by surface tension may play a significant role.
Surface tension creates a microscopic, localized surface force that exerts itself in both the tangential and nor-
mal directions. We have used the continuum approach proposed by Brackbill et al. [4] in order to represent the
surface tension force as a body force. This model represents surface tension as a continuous three-dimensional
effect across an interface, rather than as a boundary value at the interface. The resulting ‘‘body force’’ due to
surface tension can be written as
f ¼ � jð/ÞrH �ð/Þ
We

; ð31Þ
where j(/) is the interfacial curvature given by
jð/Þ ¼ r � r/
jr/j

� �
; ð32Þ
H�(/) is the Heaviside function as defined in (25), and We is the Weber number, which is given by
We ¼ q1LU 2

r
; ð33Þ
where L and U are the reference length and the velocity. The surface tension term and local interfacial curva-
ture are easily represented in terms of the level set function. Indeed, since the level set function in our formu-
lations is just the signed distance from the interface, the curvature can be accurately computed from the level
set function. However, the calculation of curvature involves second order derivatives, and since we used piece-
wise-linear basis functions, these second derivatives are zero on the element interior. Hence, the piecewise-
constant gradients were reconstructed to be continuous, using an L2 projection, and then the second order
derivatives were evaluated by differentiating the reconstructed gradient. This procedure is described in detail
by Jansen et al. [26]. The form of the surface tension force as a ‘‘body force’’ used herein is due to Chang et al.
[8].

4. Discretization

To proceed with the finite element discretization of the equations of motion, (11), we must define the finite
element approximation spaces. Let X � RN represent the closure of the physical spatial domain (i.e., X[C where
C is the boundary) in N dimensions; where N = 3 is considered here. The boundary is decomposed into portions
with natural boundary conditions, Ch, and essential boundary conditions, Cg, i.e., C = Cg[Ch. In addition,
H1(X) represents the usual Sobolev space of functions with square-integrable values and derivatives on X.

Next, X is discretized into nel finite elements, Xe. With this, we may define the trial solution space for the
semi-discrete formulations as
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Vh ¼ fvjvð�; tÞ 2 H 1ðXÞm; t 2 ½0; T �; vjx2Xe 2 P kðXeÞm; vð�; tÞ ¼ g on Cgg ð34Þ

and the weight function space as
W h ¼ fwjwð�; tÞ 2 H 1ðXÞm; t 2 ½0; T �; wjx2Xe 2 P kðXeÞm; wð�; tÞ ¼ 0 on Cgg; ð35Þ
where Pk(Xe), is the space of all polynomials defined on Xe, complete to order k P 1, and m is the number of
degrees of freedom (m = 5).

To derive the weak form of (11), the entire equation is dotted with a vector of weight functions, W 2W h,
and integrated over the spatial domain. Integration by parts is then performed to move the spatial derivatives
onto the weight functions thus decreasing the continuity requirements. This process leads to an integral equa-
tion (often referred to as the weak form), where find Y 2Vh such that
0 ¼
Z

X
ðW � A0Y ;t �W ;i � Fadv

i þW ;i � Fdiff
i þW �SÞdX�

Z
C

W � �Fadv
i þ Fdiff

i

� 	
ni dC

þ
Xnel

e¼1

Z
Xe

LTW � sðLY �SÞdX. ð36Þ
The first and second lines of (36) contains the Galerkin approximation (interior and boundary, respectively)
and the last line contains the least-squares stabilization. Note that the stream line upwind Petrov–Galerkin
(SUPG) [7] stabilization is obtained by replacing LT by LT

adv. The stabilization matrix s is an important ingre-
dient in these methods and it has been well documented by Shakib [46]; Franca and Frey [13]. Note that we
have chosen to evaluate Y instead of U. As discussed by Hauke and Hughes [15], U is often not the best choice
of state variables, particularly when the flow is nearly incompressible. For the calculations performed herein,
the SUPG stabilized method was applied with linearly interpolated pressure-primitive variables which are dis-
cussed in detail by Whiting et al. [62]
Y ¼ Y 1 Y 2 Y 3 Y 4 Y 5f gT ¼ p u1 u2 u3 Tf gT. ð37Þ
By inspecting (14)–(16) it is clear that all quantities appearing in (36) may be evaluated using (37).
To develop a numerical method, the weight functions (W), the state variable vector (Y), and its time deriv-

ative (Y,t) are expanded in terms of basis functions (typically piecewise polynomials); all calculations described
herein were performed with a linear basis function. The extension of the quadratic and cubic basis can be done
as well on the validated quadratic and cubic bases implementation of Whiting et al. [62]. The integrals in (36)
are then evaluated using Gauss quadrature resulting in a system of non-linear ordinary differential equations
which can be written as
M _Y ¼ NðY Þ; ð38Þ

where the under bar is added to make clear that Y is the vector of solution values at discrete points (spatially
interpolated with the finite element basis functions) and _Y are the time-derivative values at the same points.
Finally, this system of non-linear ordinary differential equations are solved using a fourth order explicit
Runge–Kutta time integrator with a lumped mass matrix.
4.1. The discontinuity capturing operator

Despite the success of the SUPG, it is well known to be insufficient for flows which contain discontinuities.
For example, SUPG does not preclude overshooting and undershooting about sharp layers. Therefore,
Hughes et al. [23]; Tezduyar and Park [55]; Hughes [19] suggested a simple technique for improving resolution
of sharp layers while maintaining the optimal rate of convergence. The method adds an additional ‘‘discon-
tinuity capturing term’’ (DC) which has a form similar to the streamline term, but acts in the direction of
the solution gradient rather than in the direction of the stream line [23,55,19]. The dependence of this term
on the solution gradient results in a discrete method, which is non-linear even if the original PDE is linear.
This is of little consequence to the problems that are considered here, since the inherent flow non-linearity
is more severe than the non-linearity introduced by this operator.
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The discontinuity operator adds an additional term to the original variational formulation, (36), [46,47].
This term provides additional control over gradients in the discrete solution and considerably increases the
robustness of the methodology. The DC operator needs to have the following properties: (i) in order to control
oscillations, this operator should act in the direction of the gradient; (ii) for consistency, it should be propor-
tional to the residual; (iii) for accuracy, it should quickly vanish in smooth regions of the solution. The term
derived by Hughes [19] is of the form
Xnel

e¼1

Z
Xe

mhr̂nW h � ½ ~A0�r̂nV h dX; ð39Þ
here, r̂n is the generalized local-coordinate gradient operator and mh is scalar discontinuity capturing factor of
dimension reciprocal time, ½ ~A0� is the conversion matrix from the conservative variables to the entropy vari-
ables [46,47] and V indicates the entropy variables described in Appendix A. The DC operator can be written
more explicitly (for our choice of variables Y) as
Xnel

e¼1

Z
Xe

mhgijW h
;i � ½ ~A0�Y ;j dX; ð40Þ
where Y is the pressure primitive variables described in (37) and gij is the inverse of the Jacobian of the map-
ping. The discontinuity factor mh is defined as
mh ¼ max 0;
ðLY �SÞ � ~A0

�1ðLY �SÞ
gijY ;i � ADC

0 Y ;j

" #1
2

� ðLY �SÞ � ~sðLY �SÞ
gijY ;i � ADC

0 Y ;j

" #8<
:

9=
;; ð41Þ
where
ADC
0 ¼ VT

;Y
~A0V ;Y ¼ VT

;Y A0. ð42Þ
From the above description of DC operator, one can see that this term acts in the direction of the solution
gradient but also dependent on the residual of the solution and the gradient itself. Therefore in the smooth
regions where the residual is small, the operators are small and have little effect on solution. On the other hand
in non-smooth regions the operators are larger and have strong control over the gradients of the solution.
Hence, the non-linear DC operator provides good control in the regions of the flow where there are strong
gradients and vanishes in smooth regions.

4.2. Finite element formulation for the level set method

Eqs. (21) and (29) can be represented by a single scalar advection equation of the form
oh
ot
þ a � rh ¼ S. ð43Þ
In case of the level set equation, h = /, a = u and the forcing function S is zero. On the other hand, in the case
of the re-distancing equation, h = d, a = v, and S is given by (28). This section presents the general finite
element formulation for the scalar advection equation, (43). The solution strategy for solving this equation
is similar to that used for the equations of motion, as discussed in Section 4.

Again, the spatial discretization is performed using the finite element method (FEM), and the finite element
approximation spaces, namely the solution and the weight function space, are the scalar counterparts of the
ones defined previously in Section 4. In keeping with the approach of the FEM described previously, we write
(21) in residual form. To derive the weak form of the residual form, (21) is multiplied by a smooth weighting
function, w, belonging to a space of functions w2Wh (the scalar counterpart of the vector space defined in
Section 4). The product is then integrated over a spatial domain. As the equation is solved in the convective
form, we do not integrate by parts thus there are no boundary integrals. The resulting weak form is to find
h2Hh (the scalar solution space) such that
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Z
X
ðwh;t þ waih;i � wSÞdXþ

Xnel

e¼1

Z
Xe

L̂
T
wsðh;t þ aih;i � SÞ

n o
dx ¼ 0 ð44Þ
for all w2Wh. Here s is the stabilization parameter, defined as
s ¼ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=Dt2 þ c2uigijuj

q ; ð45Þ
where C, c1, and c2 are defined based on the one-dimensional, linear advection–diffusion equation using a lin-
ear finite element basis and gij = nk,ink,j is the covariant metric tensor related to the mapping from global to
element coordinates. As before, by replacing L̂

T
by L̂

adv
(for the scalar equation L̂

adv ¼ ai
o

oxi
), we obtain the

SUPG (streamline upwind Petrov–Galerkin) stabilization method [7]. Next, the weight functions (w), the solu-
tion variable (h), and its time derivative (h,t) are expanded in terms of linear basis functions. The integrals are
then evaluated using Gauss quadrature resulting in a system of ordinary differential equations which can be
written as
M _h ¼ NðhÞ. ð46Þ

The system of ODE�s (linear, when h = /, and non-linear when h = d) is converted to an algebraic system by
introducing an explicit time integrator (4th order Runge–Kutta for h = /, and forward Euler for h = d). Then,
the two coupled systems (flow and scalar, i.e., (46) and (38)) are solved successively one after the other within
each time step. During which, the interface is convected with the local flow speed, which, as mentioned before,
distorts the distance function. As discussed earlier, this distance function is restored by the solution of (29) via
a finite element discretization, as discussed in Section 4.2. During this re-distancing step, additional care is
taken to restrict the interface from moving. To constrain the interface, we implemented a strategy proposed
by Sussman et al. [51,50,48] for a finite difference method. The principle behind the constraint calculations is to
enforce the volume filled by each phase in an element to remain constant when the re-distance step is applied
[34], which is an extension of the method proposed by Sussman et al. [51] to FEM methods.
4.3. Ghost fluid method

Although Eulerian schemes work well for most compressible flows, they may admit spurious non-physical
oscillations near the material interfaces [3]. Fedkiw et al. [11] proposed a new numerical method for treating
interfaces in Eulerian schemes that maintains a Heaviside profile of the density with no numerical smearing.
They also used the level set function to track the interface in their work. In addition, they used ghost cells
(called ghost nodes in their finite difference frame work) to prevent the smearing of the density across the inter-
face. The motivation for their method stems from the fact that the non-physical oscillations encountered by
Eulerian schemes across the material interface are due to the radical change in the equation of state across the
material interface. On the other hand, Lagrangian schemes do not smear the density profile, and it is clear
which equation of state is valid at each location. However, Lagrangian schemes have problems when subjected
to large deformations. A good summary of both Eulerian and Lagrangian schemes is given by Benson [3]. The
original method proposed by Fedkiw et al. [11] tracks the interface with the level set function which gives the
exact sub cell interface location. At the interface, they solved an approximate Riemann problem similar to
the methods in Fedkiw et al. [12] and Coquel and Saurel [9].

The approach used in this work is based on the method proposed by Fedkiw et al. [11]. The ghost fluid
method previously developed for finite difference schemes was appropriately modified for our FEM formula-
tions. In our method we used the level set function to keep track of the interface. The zero level set represents
the location of the interface as discussed in previous section, positive level sets representing the heavier fluid
(i.e., the liquid) and the negative values representing the lighter fluid (i.e., the gas). The fluid satisfies a different
equation of state on each side of the interface. A clear demarcation can be made from the exact representation
of the interface location by zeroth level set. Next, we define a ghost element in addition to the existing element
for every element which is intersected by an interface. The ghost elements which contain the interface have the
mass, momentum and energy of both the fluids. This is done by evaluating the integrals in (36) accordingly.
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Fig. 1. A typical triangular element containing an interface.
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Fig. 1 shows a typical two-dimensional triangular element which is intersected by the interface. For exam-
ple, assume that the nodes 1, 2, are in the liquid phase, where as node 3 lies inside the gas phase. Hence, for this
element, we define a ghost element containing a ghost fluid. The integrals over this element are evaluated first
assuming that the whole element is occupied by the liquid phase and then by assuming it is occupied by the gas
phase. While building the nodal contributions to both the right hand side and the left hand side, a choice is
made between the liquid or gas integral depending on whether the node lies in liquid or gas phase. Hence, in
the above example, while evaluating the local residual at node 1, we choose the liquid integral, while on the
other hand, the local residual at node 3 is evaluated based on the integral evaluation for gas phase.

The method can be further explained by a simple 1-D example. Consider the simple 1-D domain shown in
Fig. 2. The domain is divided into three elements, and the second element is intersected by the interface. Let us
assume that the region to the left of the interface contains the liquid phase and the region to the right contains
the gas phase. The figure shows both the local and the global node numbering. The finite element discretiza-
tion leads to an ordinary differential equation,
Xnelnode

B¼1

WBGB ¼ 0. ð47Þ
This implies that, if the weight functions are chosen to be arbitrary, then GB = 0, where GB is obtained by
assembling the local Ge

b. Note the �B� indicates the global node numbering, the subscript �b� indicates the local
node number. The superscript �e� denotes the element number. For the above 1-D example, the global assem-
bly operation will be defined as follows:
1 2 2 3 3 4

1

global element number

2 1 2 1 2

#1 #2 #3

Interface

LIQUID GAS

Global node numbering

Local node numbering

Fig. 2. A 1-D example of global and local numbering.
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G1 ¼ G1
1; ð48Þ

G2 ¼ G1
2 þ G2

1; ð49Þ
G3 ¼ G3

2 þ G3
1. ð50Þ
The element level residual Ge
b can be defined as
Ge
b ¼

Z
Xe

ge
bð~nÞdXe ¼

Xnqpt

k¼1

ge
bð ~nkÞ �W k; ð51Þ
where
ge
bð ~nkÞ ¼

Xnenl

b¼1

geð ~nkÞ � N b ðor N b;iÞ. ð52Þ
In the above equations, �nqpt� denotes the number of Gaussian quadrature points and the �nenl� indicates the
number of element nodes. The ghost fluid method calculates geð ~nkÞ twice for the elements that contain the
interface. Once assuming the whole element is occupied by the liquid phase and once by assuming this occu-
pied by the gas. While evaluating ge

bð ~nkÞ, depending upon whether node b resides in the liquid phase or gas
phase, the correct geð ~nkÞ is selected. In essence the method assumes a ghost fluid in all the elements that
are cut by an interface. This ghost fluid behaves as a pure liquid for the nodes that are in the liquid phase
and behaves as a pure gas when seen from the nodes that are in gas phase. In this way, we have continuous
pressure and velocity fields while avoiding the numerical dissipation due to different phasic equations of state.
The resulting numerical method allows us to keep the density profile from smearing out, while still preserving
the robustness of the numerical method.
5. Numerical results and discussion

Although the focus of the present work was a numerical simulation of the hydrodynamics of an imploding
air bubble, it would be foolhardy to apply the new method described heretofore to such a complex problem
without first validating it against some simple, well understood problems. This is the motivation for the sim-
ulations presented in Sections 5.1 and 5.2. In particular, we first demonstrate that the new algorithm can: (i)
track an interface accurately; (ii) properly represents compressible gas dynamics; (iii) capture shocks. More
comprehensive and complex three-dimensional studies applying similar three-dimensional finite element for-
mulation with level sets for the simulation of incompressible bubble dynamics can be found in Nagrath
et al. [34].

5.1. Simple advection of a cylindrical bubble

To demonstrate the validity of the numerical algorithm, a simple test problem of advecting a 2-D cylindri-
cal air bubble through a rectangular domain was considered. The ratio of density of the liquid to gas was, 1000
(i.e., water/air). The liquid was flowing with a constant uniform velocity of 1 mm/s in the vertical direction and
the buoyancy force was assumed to be zero (i.e., gravity was zero). The effect of surface tension was not con-
sidered here. Hence, the bubble should simply advect through the domain with the velocity of the liquid. The
domain and the initial position of the bubble are shown in Fig. 3. The computational domain dimensions are:
�2.0 mm 6 x 6 2.0 mm, �2.0 mm 6 y 6 8.0 mm, and 0 mm 6 z 6 1 mm, and the mesh consists of 640 hexa-
hedral elements (16 · 40 · 1). Periodic boundary conditions are applied in x- and z-directions. A uniform
velocity of 1 mm/s was specified at the inlet and a constant pressure boundary condition was applied at the
exit of the domain. The bubble radius was 1.25 mm, and the bottom of the bubble is positioned at
�1.25 mm. The motion of the bubble through the domain is shown in Fig. 4. As the fluid velocity is
1 mm/s, the bubble is expected to travel a distance of 4 mm at the end of 4 s. The numerical results show that
the bubble traveled 4 mm in 4 s as measured by the displacement of bottom of the bubble in vertical direction.
The percentage error in the calculated mass of the bubble at the end of 4 s is 0.0049. Clearly, the bubble is



Fig. 3. The computational domain and bubble position at t = 0.
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advected with the right fluid velocity and the shape of the bubble is preserved along with the conservation of
mass of the bubble.

5.2. Two-phase shock tube problem

The next test case is similar to the problem investigated by Fedkiw et al. [11] and Wardlaw [60]. In this
problem, we consider a one-dimensional shock tube of length 10 m in x-direction, with the interface located
at 5 m. The initial conditions for pressure and velocity are shown in Figs. 5 and 6, respectively. The location of
the interface is marked with a �*� in the plots. To the left of the interface is gas, and to the right is liquid. The
gas phase was assumed to be an ideal gas and the liquid phase was described by a linear equation of state. The
initial conditions on the immediate left and right side of the interface are: ql = 1 kg/m3, qr = 1000 kg/m3,
pl = 1.0 · 105 Pa, pr = 1.0 · 105 Pa, and ul = ur = 0 m/s. In addition, both liquid and gas phases have a shock
located at 0.94 m, and at 9.6 m, respectively. The shock in the gas phase is moving to the right and the con-
ditions behind the shock are: q = 8.27 kg/m3, p = 1.0 · 107 Pa, and u = 2949.97 m/s. On the other hand, the
shock in the liquid phase is moving to the left, and the conditions behind the shock are: q = 1004.13 kg/m3,
p = 1.0 · 107 Pa, and u = �6.38 m/s.

With time, the two shocks move towards the interface, however the faster traveling shock in the gas phase
strikes the interface first and sends a reflected wave back into the gas, and transmits a shock into the liquid
phase. This newly generated shock merges with the existing shock in liquid phase. The solution at
t = 0.003 s obtained using our numerical method is shown in Figs. 7–9. At this time, the interface has moved



Fig. 4. Bubble position at various time instants.
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Fig. 5. Initial pressure distribution.
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to 5.031 m, and there is a shock wave moving to the left in the gas phase and a shock wave moving to the right
in the liquid phase. At t = 0.0003 s the shock in the gas phase is located at 1.211 m and the pressure behind the
shock is 2.96 · 105 Pa. At this time, the shock in the liquid phase is located at 7.347 m and the pressure behind
the shock is 4.808 · 107 Pa. The computed results are in excellent agreement with the results presented by Fed-
kiw et al. [11] and Wardlaw [60] for the shock strength and location in each phase.
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Fig. 7. Pressure distribution at t = 0.003 s.
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5.3. Imploding air bubble in water

Let us now consider the 3-D hydrodynamic shock (i.e., HYDRO) code analysis of an imploding air bubble
which is initially spherical. The primary purpose of this study was to study bubble implosions using a full 3-D
transient DNS solution and to appraise any shape and interfacial instabilities in the fully non-linear analysis.
For simplicity, the perfect gas law for gas phase and a linear equation of state for liquid phase were used for
both the Rayleigh model and hydrodynamic shock code simulations, even though it is known that a more
sophisticated equation of state is required for realistic simulations of sonoluminescence [33] and sonofusion
[36].

We consider a spherical air bubble which was initially at atmospheric pressure and was being compressed
by the surrounding pressurized liquid at 100 atmospheres. The initial radius of the bubble was 10 lm, and the
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Fig. 9. Velocity distribution at t = 0.003 s.
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radius of the computational domain was 50 lm. The density of the water and air were taken to be 1000 and
1.226 kg/m3, respectively. The viscosity of liquid phase was taken as 3.5 · 10�1 kg/m s, and the viscosity of the
air to be, 3.58 · 10�3 kg/m s. The initial conditions chosen are typical of the parameters encountered in prior
sonoluminescence and cavitation studies. To save computational time, we derived the initial conditions ana-
lytically to start the simulations. In particular, we solved the equations presented in Section 2 until t = 0.06 ls,
and prescribed the resultant pressure and the velocity as the initial conditions to start the DNS. The usage of
these initial conditions saves computational time, but is not a requirement to start the calculations. The ratio-
nale behind choosing to solve the Rayleigh equation only up to a particular time is so, we do not exceed a
reasonable Mach number for the interface velocity ðj _RjCg

Þ. For the particular choice of t = 0.06 ls, the radial
interface velocity is 80.77 m/s, hence the gas Mach number was approximately 0.3. At this instance, the pre-
dicted value of the radius of bubble was 7.95 lm. Spherically symmetry was valid at this instance and indeed
until much longer in time, as confirmed in our numerical results.



Fig. 10. Mesh used for the simulation bubble implosion.

Fig. 11. Early stages of bubble implosion: (a) t = 0.06 ls; (b) t = 0.07 ls; (c) t = 0.075 ls.
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The non-uniform mesh used for the simulation is shown in Fig. 10. This figure shows a plane view of the
three-dimensional mesh. One can see from the figure, various levels of mesh refinement. The inner most fine
mesh affords adequate resolution of the near-singularity when the converging shock collapses at the center.
The next level of finer mesh resolves the interface and the vicinity of the shock accurately (a series of grid
refinements were done to verify the local accuracy needs). The early stages of the bubble implosion are shown
in Fig. 11. A plane is cut through the center of the domain and pressure contours are displayed on this plane.
The solid black line on the contour plots represents the interface location on this plane. Also shown to the left
in each sub-figure is the three-dimensional bubble to better show the changes in bubble size and shape. The
initial pressure profile imposed to start the numerical calculations is shown in Fig. 11(a). During the initial
stages of the implosion, the inertial motion of the liquid compresses the gas bubble. As a result the pressure
inside the bubble begins to increase. Fig. 11(a)–(c) clearly shows the decrease in the size of the bubble. We note
that during this early stage of the bubble collapse, the bubble remains spherical, and the pressure varies
smoothly inside the liquid phase. Fig. 12 shows later stages of the implosion, and Fig. 13 shows the variation
of pressure along the radius of the bubble at various times during the early stages of implosion. In this time
frame, the bubble continues to decrease in the size and a pressure front in liquid phase is approaching the
interface. As it moves towards the interface, the intensity increases due to the converging geometry. The pres-
sure starts to build at the interface, and due to volumetric compression an increase in the gas pressure inside
the air bubble can be observed. However, the pressure is still essentially uniform inside the air bubble. With
time a shock wave develops. At t = 0.091 ls (Fig. 13), a shock is forming near the interface. Comparing
Fig. 12(a)–(c), one can also observe that the bubble is also beginning to deviate from spherical shape. The
Fig. 12. Collapsing bubble: (a) t = 0.08 ls; (b) t = 0.085 ls; (c) t = 0.090 ls.
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collapse of the shock is seen in Fig. 14. In these figures, in addition to the actual bubble, a zoomed-in view of
the bubble is also presented to show the deformed ellipsoidal shape more clearly. Also in this figure, the pres-
sure distribution inside the gas phase is shown. At time t = 0.092 ls, the shock at the interface is moving into
the gas phase, Figs. 14(a) and 13, and the bubble is collapsing rapidly. As the bubble collapses, the spherically
convergent gas shock becomes much stronger and, as will be discussed subsequently, the peak pressure inside
the gas bubble is on the order of 104 atmospheres. In addition, the interface velocity increases due to spherical
convergence.

During the implosion, the bubble is compressed and the gas inside the bubble accelerates. The velocity dis-
tribution and the interface configuration are shown for three different planes in Figs. 17–19. These figures dis-
play the velocity vectors in the vicinity of the bubble along with the interface indicated by the dark line. The
region focused in on in each sub-figure varies, as we want to show the distributions around the interface, the
location of which is constantly changing. The density of the vectors also vary as the mesh size varies in those
regions. The fluid moves inward until t = 0.095 ls (Figs. 17–19). Fig. 15(a) shows the instant of the shock
collapse at the center of the bubble at 0.095 ls. At this instant the air is predicted to be compressed to a
thousand times normal density, however, the perfect gas law which was used in the study is no longer valid
at these extreme conditions. After the spherical shock impacts on itself at the center of the bubble, we can
see from Figs. 17(d), 18(d), and 19(d), that the fluid inside the bubble reverses its direction and starts moving
outward.

Figs. 20–22 display the velocity, pressure, and temperature profiles along with the temporal variation of the
effective bubble radius. In each sub-plot, the velocity, pressure, and temperature are plotted along the x, y, and
z axis. Figs. 20(a), 21(a) and 22(a) shows that the fluid moved inward until t = 0.095 ls. Also from the figures,
it can be observed the velocity is almost linear inside the gas phase. The pressure profiles shown in Figs. 20(b),
21(b) and 22(b) depicts the converging shock as well as the diverging rarefaction wave, where the interface
location is marked by �*�. Interestingly, in the later stages of implosion (t P 0.093 ls), the pressure inside



Fig. 14. Collapsing shock: (a) t = 0.092 ls; (b) t = 0.093 ls; (c) t = 0.094 ls.
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the gas phase is almost uniform. This is due to the relatively high speed of sound in the compressed air and the
radius of the bubble being quite small at these instants. The gas pressures attained at the instant of shock col-
lapse is on the order of 104 atmospheres, which is an increase of two orders of magnitude over the driving
pressure in the liquid. Figs. 20(c), 21(c), and 22(c) shows rather high temperatures near the center of the bubble
during the implosion. The reflection of the convergent shock from the center creates a spherically divergent
shock. Fig. 15(b) shows the rarefaction wave moving away from the center, and at this instant the bubble
is still collapsing. However, the relatively large pressures and temperatures decrease rapidly behind the shock
due to hydrodynamic expansion. Once the reflecting shock moving outward crosses the interface (Fig. 15(c)),
the bubble stops collapsing and starts rebounding. Fig. 16 shows the rebounding bubble after collapse. It can
be noted that Fig. 16(b) and (c) shows that the expanding bubble is regaining its spherical shape.
5.3.1. Hydrodynamics of collapse
Although we have stated that the bubble is still collapsing from t = 0.095 ls to t = 0.096 ls, this is not obvi-

ous from Fig. 15(a) and (b). However, this becomes clear if we take a look at the temporal variation of the
radius. The temporal variation of the effective bubble radius was plotted along the three different axis and
compared with the analytical predictions based on Rayleigh–Plesset model predictions for a spherical bubble
in Fig. 23. This figure shows that during this period of time the size of the bubble measured along x and z axis



Fig. 15. Shock collapse and rebound: (a) t = 0.095 ls; (b) t = 0.096 ls; (c) t = 0.097 ls.
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is almost stagnant. On the other hand, the effective radius measured along y axis is still decreasing. At t =
0.097 ls, the outward moving shock crosses the bubble�s interface, and the radius measured along y axis also
starts decreasing (Fig. 21(d)). Thus, the effective bubble radius continues to decrease in size until the reflected
shock wave crosses the bubble�s interface.

As seen in Figs. 12–15, it is clear that the bubble is no longer spherical during the final stages of the implo-
sion. Figs. 17–19 also show the non-spherical bubble shape in different planes. This is the first time, that 3-D
DNS predictions of this phenomena have been documented. Weninger et al. [61] postulated the non-sphericity
of a collapsing bubble during single bubble sonoluminescence (SBSL). They conclude that the observed long
time decay of the angle dependent correlation is due to the refraction of the sonoluminescence (SL) photons by
the interface of a non-spherical bubble. Their studies predicted that the dipole component in the broadband
measurements is due to the asphericity of the collapse. Also, there is some direct experimental evidence show-
ing non-spherical bubble shapes [65].

The asphericity of the bubble can be attributed to many factors, such as the inherent dynamic instability of
contracting bubbles, the proximity of solid boundaries or free surfaces, and buoyancy effects [42]. The DNS
results presented herein implies that the deviation from spherical shape is due to the excitation of non-
spherical shape instability modes of the gas bubble during the violent collapse [64]. Brenner et al. [6] in their
work on acoustic energy storage during SBSL, showed that the most easily excited instability modes of bubble
are not spherically symmetric.



Fig. 16. Diverging shock and rebounding bubble: (a) t = 0.098 ls; (b) t = 0.10 ls; (c) t = 0.15 ls.
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Moreover, the observance of an ellipsoidal-shaped bubble is expected as ellipticity is the leading order insta-
bility mode [61]. However, it was not clear in these prior studies, which order of the perturbation would be
dominant during bubble collapse.

Hence, to further investigate the shape instabilities observed during the collapse stage, we performed an
analysis on the growth of instabilities for a spherical interface. Plesset and Mitchelle [41] studied the problem
of a spherical interface between two immiscible fluids of different densities for accelerated motions analogous
to the planar interface studies by Taylor [52]. Later, Plesset and Prosperetti [42] further addressed the prob-
lems associated with the dynamics of non-spherical bubbles. The radius of the distorted bubble�s interface can
be represented as
rs ¼ Rþ RanY n; ð53Þ
where R(t) is the instantaneous radius of the interface, Yn is a spherical harmonic of order n, and the an(t)s are
the amplitude of the spherical harmonic components of order n. The stability of the spherical interface can be
determined based on whether the interface distortions of small amplitude grow or diminish. For small
perturbations to the interface (|an(t)|� R(t)), the growth in amplitude of the perturbation is governed by
[41,42]
€an þ
3

R
_R _an � Aan ¼ 0; ð54Þ



Fig. 17. Velocity distribution during the implosion displayed on a xy-plane: (a) t = 0.090 ls; (b) t = 0.093 ls; (c) t = 0.094 ls; (d)
t = 0.095 ls; (e) t = 0.096 ls; (f) t = 0.098 ls; (g) t = 0.10 ls; (h) t = 0.15 ls.
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where
A ¼
½nðn� 1Þql � ðnþ 1Þðnþ 2Þqg�€R� ðn� 1Þnðnþ 1Þðnþ 2Þr=R2

½nql þ ðnþ 1Þqg�R
. ð55Þ
Solving (54) together with (8) yields the evolution of amplitude with time. Fig. 24(a) shows the growth in
amplitude (an) with time for different n. We can see that the instabilities do not grow until the final stages
of bubble implosion. The variation of the distortion amplitude with mean bubble radius is shown in
Fig. 24(b). One can observe that as the radius of the bubble decreases, the distortion amplitude may oscillate



Fig. 18. Velocity distribution during the implosion displayed on a yz-plane: (a) t = 0.090 ls; (b) t = 0.093 ls; (c) t = 0.094 ls; (d)
t = 0.095 ls; (e) t = 0.096 ls; (f) t = 0.098 ls; (g) t = 0.10 ls; (h) t = 0.15 ls.
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in sign with increasing frequency and magnitude. From both Fig. 24(a) and (b) it can be noted that higher
harmonics are excited. Hence the observance of shape instabilities in the DNS results is expected.

From the pressure distributions seen in Figs. 20(b), 21(b), and 22(b), one can see that the impact of the
shock at the center, and the peak pressure, occurs at the same instant in all the directions. This is because
the initial shock itself is spherically symmetric although the bubble is not. This is significant and is apparently
the reason that previous spherically-symmetric predictions of the peak temperature and pressure conditions
have been so successful [33,36].



Fig. 19. Velocity distribution during the implosion displayed on a zx-plane: (a) t = 0.090 ls; (b) t = 0.093 ls; (c) t = 0.094 ls; (d)
t = 0.095 ls; (e) t = 0.096 ls; (f) t = 0.098 ls; (g) t = 0.10 ls; (h) t = 0.15 ls.
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The temperature profiles seen in Figs. 20(c), 21(c), and 22(c) show the compression experienced by the flu-
ids. Inside the gas phase, the local temperature rises to many thousands of degrees Kelvin as the gas is strongly
compressed. The converging shock first rapidly increases the velocity inside the bubble (Figs. 20(a), 21(a), and
22(a)), but near the final convergence of the shock wave, the velocity is reduced due to the resistance of the gas
to further compression. The flow reverses direction outward once the shock has impacted on itself at the center
of the bubble. These observations are similar in all the three directions, however, the change in effective radius
of the bubble measured along the three axial directions are different. Importantly, the radius measured along
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Fig. 20. Solution plotted along x-axis: (a) velocity; (b) pressure; (c) temperature; (d) radius.
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the y-direction decreases even after the shock collapse, while the radii measured along x and z directions are
almost stagnant during this time interval. Fig. 23 shows the analytical spherical bubble (Rayleigh–Plesset
model) predictions with our DNS predictions. We can see that although the slope remains similar, there is
a shift in the curve during the final stage of the implosion process and this continues through bubble rebound.
This can be attributed to three-dimensional effects and shock-induced phasic compression. In addition, the
Rayleigh–Plesset model does not account for any dissipative physical interactions (i.e., viscosity, heat conduc-
tivity etc.). In contrast, the mathematical model and numerical model used in DNS code accounts for viscos-
ity, heat conductivity and compressibility of the liquid and gas. In addition, the computed 3D solution predicts
an aspherical shape of the bubble rather than a radially symmetrical bubble. That is why a discrepancy
between the computed solution and Rayleigh–Plesset solution happens already at the early stage of the bubble
rebound. It is worth noting that the dissipation due to viscosity, heat conductivity and acoustic radiation leads
to the fact that most of the kinetic energy of converging liquid is lost during bubble collapse and thus, unlike
with the Rayleigh–Plesset model, the bubble does not recover the same initial radius (see Fig. 24(a)).

In addition, our DNS results clearly indicate interfacial instabilities along with the shape instabilities. The
onset of interfacial instabilities can be attributed to a Taylor instability mode [52] at higher interfacial accel-
eration. Specifically, these classic RT instabilities occur during the later stages of implosion when the gas accel-
erates into the liquid. There will be a significant destabilization as the bubble nears its minimum size, since the
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Fig. 21. Solution plotted along y-axis: (a) velocity; (b) pressure; (c) temperature; (d) radius.
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acceleration of the gas towards the liquid at this time is enormous [18]. However, this effect is mitigated by the
fact that the gas density also increases significantly [31].

In the present simulations, these surface instabilities were prominent only during the time interval in which
the bubble radius is near its minimum and the interfacial velocities ðj _RjÞ are higher than the local speed of
sound of the gas. Until t = 0.09 ls the interface velocity is below the local speed of sound in the gas and
the bubble interface remains smooth and spherical. However, once the interface velocity gets to a Mach num-
ber higher than unity, during the period of violent collapse when the interfacial accelerations were large, Figs.
17–19 show that interfacial instabilities become significant. This phenomena has been noted by many other
researchers. Young [65] notes that during the final stages of bubble collapse during typical SBSL experiments,
the bubble interface decelerates in preparation for re-expansion, leading to an extremely large relative accel-
eration of the gas with respect to the liquid, which tends to destabilize the interface. As noted previously, in
our calculations it was observed that the interfacial instabilities diminish once the bubble�s interface acceler-
ation reduces (i.e., deceleration begins) and switches sign during bubble rebound. It is important to stress that
the rough bubble interface see in Figs. 14 and 15 is due to physical instabilities rather than insufficient mesh
resolution. Indeed care was taken to have a quality mesh with the required number of elements to adequately
represent the bubble�s surface even at the minimum size of the bubble. Although we have not presented the
results here, the simulations were performed for different resolutions of the mesh, and it did not change the
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Fig. 22. Solution plotted along z-axis: (a) velocity; (b) pressure; (c) temperature; (d) radius.
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qualitative nature of the results on the interfacial and shape instabilities. Moreover, neither the time at which
the minimum bubble volume was achieved, nor the characteristics of the collapse and rebound changed with
the resolution of the mesh.

6. Conclusions

The current work presents a robust computational algorithm to handle compressible multiphase flows with
strong shocks. The inherent abilities of this novel FEM-based computational strategy, which uses both the
level set approach and ghost fluid method, was demonstrated. Using this method, a 3-D hydrodynamic shock
code simulation of an imploding air bubble in a compressible liquid (water) was performed. A transient three-
dimensional solution was presented for an implosion and rebound of the bubble. The results were compared
with the Rayleigh–Plesset analysis and found to be in good agreement for most of the implosion process. The
deviation during the final, high Mach number, stage of bubble collapse and rebound was attributed to fluid
compressibility effects and the aspherical shape of the bubble. The results show that our method is capable of
simulating a spherically converging shock wave. The spherical asymmetries arising from bubble implosion
were captured and the existence of shape and interfacial instabilities were found.

Among the different problems which are of interest for single bubble sonoluminescence (SBSL), the stability
of the bubble�s shape is one of the most significant. Indeed, the resultant non-linear oscillations and the sta-
bility of the bubble are strongly influenced by the bubble shape. Researchers have independently studied this
effect by perturbing the shape of the bubble numerically [45]. In this paper, we have shown that the bubble
collapses with multiple harmonics rather than with a single spherical harmonic. Also, the current work clearly
shows the temporal evolution of both shape and interfacial instabilities. This is significant in view of the var-
ious propositions [31] suggesting that the instabilities are responsible for the extinction of sonoluminescence
[64,18,5].

The DNS simulations can advance our understanding of the bubble dynamics involved in these unstable
regimes as well. We hope our results will instigate more efforts to use DNS as a tool to capture the complex
dynamics involved in both single and multiple bubble implosions. Future 3-D studies should use more realistic
equations of state and concentrate on the DNS simulations of externally forced oscillations of a bubble. This
type of study could be done by imposing the time dependent boundary conditions at the domain boundary.
These studies should show the effect of non-spherical shape on the oscillations. Furthermore, one can also per-
form parametric studies on the implosion of cavitation of bubble clusters to help understand the huge liquid
pressure intensifications that occur within a bubble cluster [5], and to study the transient shape of the inter-
acting bubbles within an imploding bubble cluster. Studies of this kind can help determine the key microscopic
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variation of distortion amplitude with radius
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variables that controls the various associated phenomena [59]. In the present work, we did not consider the
mass transfer and have ignored phase change, However, these effects have been considered in more compre-
hensive studies of sonoluminescence and sonofusion [29,36]. Nevertheless, the present studies indicate that the
algorithm developed for the analysis of bubble implosion should be inherently capable of representing all of
the fundamental phenomena discussed herein.
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Appendix A. Coefficient matrices

The following constants have been used to write the matrices described in the appendix:
ep
1 ¼

oq
op

� �
T

etot þ q
oe
op

� �
T

; ep
2 ¼ ep

1 þ 1; ðA-1Þ

ep
3 ¼ qetot þ p; ep

4 ¼
oq
oT

� �
p

etot þ q
oe
oT

� �
p

. ðA-2Þ
After substituting the partial derivatives, the above equations simplify to:
ep
1 ¼ qbT e1 � apT ; ep

2 ¼ ep
1 þ 1; ðA-3Þ

ep
3 ¼ qe1 þ p; ep

4 ¼ �qape1 þ qcp. ðA-4Þ
The matrix A0 = U,Y is given by
A0 ¼

qbT 0 0 0 �qap

qbT u1 q 0 0 �qapu1

qbT u2 0 q 0 �qapu2

qbT u3 0 0 q �qapu3

ep
1 qu1 qu2 qu3 ep

4

2
6666664

3
7777775

. ðA-5Þ
The Euler–Jacobians, Ai = Fadv
i,Y, are given by:
A1 ¼

qbT u1 q 0 0 �qapu1

qbT u2
1 þ 1 2qu1 0 0 �qapu2

1

qbT u12 qu2 qu1 0 �qapu12

qbT u31 qu3 0 qu1 �qapu31

u1ep
2 ep

3 þ qu2
1 qu12 qu31 u1ep

4

2
66664

3
77775; ðA-6Þ

A2 ¼

qbT u2 0 q 0 �qapu2

qbT u12 qu2 qu1 0 �qapu12

qbT u2
2 þ 1 0 2qu2 0 �qapu2

2

qbT u23 0 qu3 qu2 �qapu23

u2ep
2 qu12 ep

3 þ qu2
2 qu23 u2ep

4

2
66664

3
77775; ðA-7Þ

A3 ¼

qbT u3 0 0 q �qapu3

qbT u31 qu3 0 qu1 �qapu31

qbT u23 0 qu3 qu2 �qapu23

qbT u2
3 þ 1 0 0 2qu3 �qapu2

3

u3ep
2 qu31 qu23 ep

3 þ qu2
3 u3ep

4

2
666664

3
777775. ðA-8Þ
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If we define the constant v = k + 2l, the diffusivity coefficient matrices Kij are given by:
K11 ¼

0 0 0 0 0

0 v 0 0 0

0 0 l 0 0

0 0 0 l 0

0 vu1 lu2 lu3 j

2
6666664

3
7777775
; ðA-9Þ

K12 ¼

0 0 0 0 0

0 0 k 0 0

0 l 0 0 0

0 0 0 0 0

0 lu2 ku1 0 0

2
6666664

3
7777775
; ðA-10Þ

K13 ¼

0 0 0 0 0

0 0 0 k 0

0 0 0 0 0

0 l 0 0 0

0 lu3 0 ku1 0

2
6666664

3
7777775
; ðA-11Þ

K21 ¼

0 0 0 0 0

0 0 l 0 0

0 k 0 0 0

0 0 0 0 0

0 ku2 lu1 0 0

2
6666664

3
7777775
; ðA-12Þ

K22 ¼

0 0 0 0 0

0 l 0 0 0

0 0 v 0 0

0 0 0 l 0

0 lu1 vu2 lu3 j

2
6666664

3
7777775
; ðA-13Þ

K23 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 k 0

0 0 l 0 0

0 0 lu3 ku2 0

2
6666664

3
7777775
; ðA-14Þ

K31 ¼

0 0 0 0 0

0 0 0 l 0

0 0 0 0 0

0 k 0 0 0

0 ku3 0 lu1 0

2
6666664

3
7777775
; ðA-15Þ

K32 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 l 0

0 0 k 0 0

2
6666664

3
7777775
; ðA-16Þ
0 0 ku3 lu2 0
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K33 ¼

0 0 0 0 0

0 l 0 0 0

0 0 l 0 0

0 0 0 v 0

2
6666664

3
7777775

. ðA-17Þ
0 lu1 lu2 vu3 j

The entropy variable vector is given by
V ¼ 1

T
~l� juj2=2 u1 u2 u3 �1
� �

; ðA-18Þ
where ~l ¼ eþ p=q� Ts is the chemical potential per unit mass, and s is the entropy.
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